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Abstract

The capacity for learning to recognize and
exploit environmental affordances is an im-
portant consideration for the design of current
and future developmental robotic systems.
We present a system that uses a robotic arm,
camera systems and self-organizing maps to
learn basic affordances of objects.

1. Introduction

The term affordance, coined by the psychologist J.J.
Gibson (Gibson, 1986), refers to the interactive pos-
sibilites that are available to a cognitive system when
confronted with particular objects or environments.
Practical examples of such scenarios for robotic sys-
tems might include a mobile robot entering a room
because it perceived that the room afforded being
entered due to the door being open, or a system
with a robotic arm picking up a cup because it per-
ceived that the cup had a handle that afforded being
grasped by the arm’s gripper.

We present a cognitive vision system that learns
basic object affordance properties by interacting with
objects on a table surface using a robotic arm (Neu-
ronics Katana 6M), and observing the result using
camera systems (Point Grey Research Flea and Bum-
blebee). These devices are integrated over a dis-
tributed architecture, shown in Fig. 1. The exper-
imental environment is shown in Fig. 2. The main
idea is to allow the system to perform a variety of
simple push actions on objects that are placed on the
work surface, record video footage of the result, har-
vest this data for appropriate features and attempt
to learn the similarities inherent in the behaviour
of those objects that share physical properties that
relate to what they afford when affected by such ac-
tions.

2. Related Work

Researchers have previously tackled the issue
of affordance learning in a number of differ-
ent settings and emphasizing different aspects of

Figure 1: System architecture.

Figure 2: View of the workspace. The robotic arm holds

a black plastic tool that is used to push objects on the

work surface. Some sample objects are also shown.

the problem. Robotic systems have been de-
veloped to learn pre-specified binary affordance
classes, e.g. rolling versus non-rolling objects
(Fitzpatrick et al., 2003) or liftable versus non-
liftable objects (Paletta et al., 2007). While such
systems take on the difficult challenge of learning af-
fordances in the real world, they would benefit from
a more generalized form of learning that can dis-
cover affordance classes in the environment dynam-
ically. Others (Cos-Aguilera et al., 2004) have used



more sophisticated learning mechanisms to learn af-
fordance properties, but in simulated environments.

In our case, we envisage using an unsupervised
learning mechanism to form generalized affordance
classes dynamically as the system interacts with ob-
jects using a repertoire of pre-specified actions.

3. Our System

In our research to date, we have been using self-
organizing maps (SOMs) to accomplish this learn-
ing task. Labels indicating both action and object
class are created during experiments, as well as an
associated feature vector garnered from the video se-
quences that are taken after actions are performed
on the objects. A SOM is incrementally trained to
recognize what should occur when a particular ac-
tion is performed on a particular object. Moreover,
it generalizes effectively so as to estimate how similar
a given action/object pairing is to its counterparts.
This is useful, because it can then recognize that,
e.g., pushing a round object from a certain direction
will be similar to pushing another round object from
the same direction, but different to pushing the same
round object from a different direction, or a flat ob-
ject from the original direction.

In (Ridge et al., 2008), we presented an experi-
ment where three different pushing actions were pro-
vided to the system for interacting with four house-
hold objects (a toy cube, a round child’s toy rat-
tle, a Pepsi can and a mobile phone, as seen in Fig.
2). After an object was pushed with one of the pos-
sible actions, features such as mean velocity, total
distance traveled, final object orientation, etc. were
gathered from the resultant video sequence. These
features, along with the associated action/object la-
bel, were used to train a SOM incrementally. As
the system performed more interactions, it learned
to distinguish between the objects that rolled in the
workspace (toy rattle and Pepsi can) and those that
did not (toy cube and mobile phone).

However, this experiment assumed that the object
class and state were known in advance- potentially
from a seperate perception module. Our current
work involves changing this so that, instead of using
object class labels, object properties such as surface
curvature, object thickness, object shape, etc., are
gathered from both regular RGB images and range
data (from the Bumblebee stereo camera). These
features can either be used as raw input to the SOM,
along with the result features and the action label,
or the object property feature space can be ana-
lyzed seperately to form atomic labels, e.g. ”curved”
or ”non-curved”. After training, when the system
encounters novel scenarios, it can then take object
property measurements and use its trained SOM(s)
to judge how similar the current scenario is to pre-
viously encountered ones and predict the resultant

outcome based on this past experience.
An important point is that such a SOM-based

learning mechanism is agnostic to the types of ob-
jects used in the experiment, the types of actions
that are used to interact with them, or the affor-
dance classes that emerge from such interactions. If
the feature set is diverse enough to capture the es-
sential aspects of the affordances, then the map will
organize in the feature space and effectively cluster
action/object pairings with similar affordance prop-
erties.

4. Conclusion

In a cognitive system, the ability to learn continu-
ously during a lifespan as more environmental expe-
rience is gained, is crucial for successful development.
One aspect of this is the ability to learn affordance
classes as they become apparent through interaction.
While our system is capable of both predicting and
generalizing resultant feature vectors based on ob-
ject properties, in past experiments we have assumed
that such properties are known. Our ongoing work
involves adding perceptual capabilities to the system
using, e.g., range data, so that it can perceive such
object properties directly. In the future, we would
like to implement some form of constructivist learn-
ing where the system uses learned basic affordances
to construct more complex affordance concepts, e.g.
this obstacle affords being avoided if the object is
first pushed forward and then pushed to the right.
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